Dimethylfumarate Attenuates Renal Fibrosis via NF-E2-Related Factor 2-Mediated Inhibition of Transforming Growth Factor-β/Smad Signaling

86Citations
Citations of this article
66Readers
Mendeley users who have this article in their library.

Abstract

TGF-β plays a key role in the development of renal fibrosis. Suppressing the TGF-β signaling pathway is a possible therapeutic approach for preventing this disease, and reports have suggested that Nrf2 protects against renal fibrosis by inhibiting TGF-β signaling. This study examines whether dimethylfumarate (DMF), which stimulates Nrf2, prevents renal fibrosis via the Nrf2-mediated suppression of TGF-β signaling. Results showed that DMF increased nuclear levels of Nrf2, and both DMF and adenovirus-mediated overexpression of Nrf2 (Ad-Nrf2) decreased PAI-1, alpha-smooth muscle actin (α-SMA), fibronectin and type 1 collagen expression in TGF-β-treated rat mesangial cells (RMCs) and renal fibroblast cells (NRK-49F). Additionally, DMF and Ad-Nrf2 repressed TGF-β-stimulated Smad3 activity by inhibiting Smad3 phosphorylation, which was restored by siRNA-mediated knockdown of Nrf2 expression. However, downregulation of the antioxidant response element (ARE)-driven Nrf2 target genes such as NQO1, HO-1 and glutathione S-transferase (GST) did not reverse the inhibitory effect of DMF on TGF-β-induced upregulation of profibrotic genes or extracellular matrix proteins, suggesting an ARE-independent anti-fibrotic activity of DMF. Finally, DMF suppressed unilateral ureteral obstruction (UUO)-induced renal fibrosis and α-SMA, fibronectin and type 1 collagen expression in the obstructed kidneys from UUO mice, along with increased and decreased expression of Nrf2 and phospho-Smad3, respectively. In summary, DMF attenuated renal fibrosis via the Nrf2-mediated inhibition of TGF-β/Smad3 signaling in an ARE-independent manner, suggesting that DMF could be used to treat renal fibrosis. © 2012 Oh et al.

Cite

CITATION STYLE

APA

Oh, C. J., Kim, J. Y., Choi, Y. K., Kim, H. J., Jeong, J. Y., Bae, K. H., … Lee, I. K. (2012). Dimethylfumarate Attenuates Renal Fibrosis via NF-E2-Related Factor 2-Mediated Inhibition of Transforming Growth Factor-β/Smad Signaling. PLoS ONE, 7(10). https://doi.org/10.1371/journal.pone.0045870

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free