The development of aqueous ammonium-ion batteries (AAIBs) is currently attracting great attention because of the interesting electrochemical features induced by the charge carrier NH4+. One possible way to improve the performance of AAIBs is increasing the salt concentration in the electrolyte. Yet, few studies focus on the complex electrode-electrolyte interface behaviors in highly concentrated electrolytes, which affect the electrochemical performance of AAIBs significantly. Herein, we aim to understand the impact of CH3COONH4 electrolyte concentration on the NH4+ storage performance of a bimetallic hydroxide material. Experimental and theoretical simulation results indicate that the acetate anion will participate in the construction of the solvated NH4+ in a highly concentrated electrolyte, facilitating the adsorption of the solvated NH4+ cluster on the electrode surface. Besides, a new partial de-solvation model is also proposed, demonstrating an energy favorable de-solvation process. Finally, an ammonium-ion hybrid battery is designed, which provides a high average discharge voltage of 1.7 V and good energy density of 368 W h kg(cathode)−1, outperforming most of the state-of-the-art aqueous batteries. This work provides new understanding about the electrode's interfacial chemistry in different concentrated CH3COONH4 electrolytes, establishes a correlation between the electrolyte concentration and the electrode's performances, and demonstrates the superiority of the hybrid ammonium-ion battery design.
CITATION STYLE
Meng, J., Song, Y., Wang, J., Hei, P., Liu, C., Li, M., … Liu, X. X. (2023). A salt-concentrated electrolyte for aqueous ammonium-ion hybrid batteries. Chemical Science, 15(1), 220–229. https://doi.org/10.1039/d3sc05318k
Mendeley helps you to discover research relevant for your work.