The plasma treatment on commercial active carbon (AC) was carried out in a capacitively coupled plasma system using Ar + 10% O2 at pressure of 4.0 Torr. The RF plasma power ranged from 50 W to 100 W and the processing time was 10 min. The carbon film electrode was fabricated by electrophoretic deposition. Micro-Raman spectroscopy revealed the highly increased disorder of sp2 C lattice for the AC treated at 75 W. An electrosorption capacity of 6.15 mg/g was recorded for the carbon treated at 75 W in a 0.1 mM NaCl solution when 1.5 V was applied for 5 hours, while the capacity of the untreated AC was 1.01 mg/g. The plasma treatment led to 5.09 times increase in the absorption capacity. The jump of electrosorption capacity by plasma treatment was consistent with the Raman spectra and electrochemical double layer capacitance. This work demonstrated that plasma treatment was a potentially efficient approach to activating biochar to serve as electrode material for capacitive deionization (CDI).
CITATION STYLE
Zeng, A., Shrestha, M., Wang, K., Neto, V. F., Gabriel, B., & Fan, Q. H. (2017). Plasma Treated Active Carbon for Capacitive Deionization of Saline Water. Journal of Nanomaterials, 2017. https://doi.org/10.1155/2017/1934724
Mendeley helps you to discover research relevant for your work.