Empirical Removal of Tides and Inverse Barometer Effect on DInSAR from Double DInSAR and a Regional Climate Model

5Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Ice shelves - the floating extensions of the Antarctic ice sheet - regulate the Antarctic contribution to sea-level rise by restraining the grounded ice flowing from upstream. Therefore, ice-shelf change (e.g., ice-shelf thinning) results in accelerated ice discharge into the ocean, which has a direct effect on sea level. Studying ice-shelf velocity allows the monitoring of the ice shelves' stability and evolution. Differential synthetic aperture radar interferometry (DInSAR) is a common technique from which highly accurate velocity maps can be inferred at high resolution. Because ice shelves are afloat, small sea-level changes - i.e., ocean tides and varying atmospheric pressure (aka inverse barometer effect) lead to vertical displacements. If not accounted for in the interferometric process, these effects will induce a strong bias in the horizontal velocity estimation. In this article, we present an empirical DInSAR correction technique from geophysical models and double DInSAR, with a study on its variance propagation. The method is developed to be used at large coverage on short timescales, essential for the near-continuous monitoring of rapidly changing areas on polar ice sheets. We used Sentinel-1 SAR acquisitions in interferometric wide and extra -wide swath modes. The vertical interferometric bias is estimated using a regional climate model (MAR) and a tide model (CATS2008). The study area is located on the Roi Baudouin Ice Shelf in Dronning Maud Land, East Antarctica. Results show a major decrease (67 m·a-1) in the vertical-induced displacement bias.

Cite

CITATION STYLE

APA

Glaude, Q., Amory, C., Berger, S., Derauw, D., Pattyn, F., Barbier, C., & Orban, A. (2020). Empirical Removal of Tides and Inverse Barometer Effect on DInSAR from Double DInSAR and a Regional Climate Model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 4085–4094. https://doi.org/10.1109/JSTARS.2020.3008497

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free