Stimulus-specific visual working memory representations in human cerebellar lobule VIIb/VIIIa

28Citations
Citations of this article
62Readers
Mendeley users who have this article in their library.

Abstract

fMRI research has revealed that cerebellar lobule VIIb/VIIIa exhibits load-dependent activity that increases with the number of items held in visual working memory (VWM). However, it remains unclear whether these cerebellar responses reflect processes specific to VWM or more general visual attentional mechanisms. To investigate this question, we examined whether cerebellar activity during the delay period of a VWM task is selective for stimuli held in working memory. A sample of male and female human subjects performed a VWM continuous report task in which they were retroactively cued to remember the direction of motion of moving dot stimuli. Cerebellar lobule VIIb/VIIIa delay-period activation accurately decoded the direction of the remembered stimulus, as did frontal and parietal regions of the dorsal attention network. Arguing against a motor explanation, no other cerebellar area exhibited stimulus specificity, including the oculomotor vermis, a key area associated with eye movement control. Finer-scale analysis revealed that the medial portion of lobule VIIb and to a lesser degree the lateral most portion of lobules VIIb and VIIIa, which exhibit robust resting state connectivity with frontal and parietal regions of the dorsal attention network, encoded the identity of the remembered stimulus, while intermediate portions of lobule VIIb/VIIIa did not. These findings of stimulus-specific coding of VWM within lobule VIIb/VIIIa indicate for the first time that the distributed network responsible for the encoding and maintenance of mnemonic representations extends to the cerebellum.

Cite

CITATION STYLE

APA

Brissenden, J. A., Tobyne, S. M., Halko, M. A., & Somers, D. C. (2021). Stimulus-specific visual working memory representations in human cerebellar lobule VIIb/VIIIa. Journal of Neuroscience, 41(5), 1033–1045. https://doi.org/10.1523/JNEUROSCI.1253-20.2020

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free