Compressed sensing (CS)-based frequency agile radar (FAR) is attractive due to its superior data rate and target measurement performance. However, traditional frequency strategies for CS-based FAR are not cognitive enough to adapt well to the increasingly severe active interference environment. In this paper, we propose a cognitive frequency design method for CS-based FAR using reinforcement learning (RL). Specifically, we formulate the frequency design of CS-based FAR as a model-free partially observable Markov decision process (POMDP) to cope with the non-cooperation of the active interference environment. Then, a recognizer-based belief state computing method is proposed to relieve the storage and computation burdens in solving the model-free POMDP. This method is independent of the environmental knowledge and robust to the sensing scenario. Finally, the double deep Q network-based method using the exploration strategy integrating the CS-based recovery metric into the ϵ-greedy strategy (DDQN-CSR-ϵ-greedy) is proposed to solve the model-free POMDP. This can achieve better target measurement performance while avoiding active interference compared to the existing techniques. A number of examples are presented to demonstrate the effectiveness and advantage of the proposed design.
CITATION STYLE
Wang, S., Liu, Z., Xie, R., & Ran, L. (2022). Reinforcement Learning for Compressed-Sensing Based Frequency Agile Radar in the Presence of Active Interference. Remote Sensing, 14(4). https://doi.org/10.3390/rs14040968
Mendeley helps you to discover research relevant for your work.