The generation of antibody secretory cells from resting B lymphocytes after immunization with most protein Ag requires B cell signaling by Ag, direct Th cell contact and lymphokines. Previous studies suggest that cell contact-mediated signals may be transduced by Ia after Ia binding by alpha beta TCR and/or CD4. Seemingly inconsistent with this concept are findings that cross-linking of Ia molecules on quiescent B cells leads to cAMP generation that is antagonistic for B cell mitogenesis. Here we show that ligand binding to IL-4 and Ag receptors on quiescent B cells induce transition of these cells into a competent state in which Ia molecules transduce signals via a distinct mechanism. This mechanism involves the tyrosine kinase-dependent activation of phospholipase C leading to Ca2+ mobilization from intracellular stores and the extracellular space. This competence, which is seen within 4 h of priming, is not simply a function of increased Ia expression by the B cell because the response can be induced by cross-linking of less than 5% of cell surface Ia molecules on primed cells. Finally, cross-linking of Ia molecules leads to more than fivefold greater increase in [Ca2+]i than is induced by membrane Ig ligation. These findings are consistent with alpha beta TCR/CD4 delivery via Ia of proliferative signals mediated by tyrosine kinase activation, phosphoinositide hydrolysis and Ca2+ mobilization.
CITATION STYLE
Cambier, J. C., Morrison, D. C., Chien, M. M., & Lehmann, K. R. (1991). Modeling of T cell contact-dependent B cell activation. IL-4 and antigen receptor ligation primes quiescent B cells to mobilize calcium in response to Ia cross-linking. The Journal of Immunology, 146(7), 2075–2082. https://doi.org/10.4049/jimmunol.146.7.2075
Mendeley helps you to discover research relevant for your work.