Patterned sequence in the transcriptome of vascular plants

6Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Microsatellites (repeated subsequences based on motifs of one to six nucleotides) are widely used as codominant genetic markers because of their frequent polymorphism and relative selective neutrality. Minisatellites are repeats of motifs having seven or more nucleotides. The large number of EST sequences now available in public databases offers an opportunity to compare microsatellite and minisatellite properties and evaluate their evolution over a broad range of plant taxa. Results: Repeated motifs from one to 250 nucleotides long were identified in 6793306 expressed sequence tags (ESTs) from 88 genera of vascular plants, using a custom data-processing pipeline that allowed limited variation among repeats. The pipeline processed trimmed but otherwise unfiltered sequence and output nonredundant loci of at least 15 nucleotides, with degree of polymorphism and PCR primers wherever possible. Motifs that were an integral multiple of three in length were more abundant and richer in G/C than other motifs. From 80 to 85% of minisatellite motifs represented repeats within proteins, up to the 228-nucleotide repeat of ubiquitin, but not all of these repeats preserved reading frame. The remaining 15 to 20% of minisatellite motifs were associated with transcribed repetitive elements, e.g., retrotransposons. Relative microsatellite motif frequencies did not correlate tightly to phylogenetic relationship. Evolution of increased microsatellite and EST GC content was evident within the grasses. Microsatellites were less frequent in the transcriptome of genera with large genomes, but there was no evidence for greater dilution of the transcriptome with transposable element transcripts in these genera. Conclusion: The relatively low correlation of microsatellite spectrum to phylogeny suggests that repeat loci evolve more rapidly than the surrounding sequence, although tissue specificity of the different EST libraries is a complicating factor. In-frame motifs are more abundant and higher in GC than frame-shifting motifs, but most EST minisatellite loci appear to represent repeats in translated sequence, regardless of whether reading frame is preserved. Motifs of four to six nucleotides are as polymorphic in EST collections as the commonly used motifs of two and three nucleotides, and they can be exploited as genetic markers with little additional effort. © 2007 Crane; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Crane, C. F. (2007). Patterned sequence in the transcriptome of vascular plants. BMC Genomics, 8. https://doi.org/10.1186/1471-2164-8-173

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free