IL-23 is a heterodimeric cytokine composed of a p19 subunit and the p40 subunit of IL-12. IL-23 has proinflammatory activity, inducing IL-17 secretion from activated CD4+ T cells and stimulating the proliferation of memory CD4+ T cells. We investigated the pathogenic role of IL-23 in CD4+ T cells in mice lacking the IL-1R antagonist (IL-1Ra−/−), an animal model of spontaneous arthritis. IL-23 was strongly expressed in the inflamed joints of IL-1Ra−/− mice. Recombinant adenovirus expressing mouse IL-23 (rAd/mIL-23) significantly accelerated this joint inflammation and joint destruction. IL-1β further increased the production of IL-23, which induced IL-17 production and OX40 expression in splenic CD4+ T cells of IL-1Ra−/− mice. Blocking IL-23 with anti-p19 Ab abolished the IL-17 production induced by IL-1 in splenocyte cultures. The process of IL-23-induced IL-17 production in CD4+ T cells was mediated via the activation of Jak2, PI3K/Akt, STAT3, and NF-κB, whereas p38 MAPK and AP-1 did not participate in the process. Our data suggest that IL-23 is a link between IL-1 and IL-17. IL-23 seems to be a central proinflammatory cytokine in the pathogenesis of this IL-1Ra−/− model of spontaneous arthritis. Its intracellular signaling pathway could be useful therapeutic targets in the treatment of autoimmune arthritis.
CITATION STYLE
Cho, M.-L., Kang, J.-W., Moon, Y.-M., Nam, H.-J., Jhun, J.-Y., Heo, S.-B., … Kim, H.-Y. (2006). STAT3 and NF-κB Signal Pathway Is Required for IL-23-Mediated IL-17 Production in Spontaneous Arthritis Animal Model IL-1 Receptor Antagonist-Deficient Mice. The Journal of Immunology, 176(9), 5652–5661. https://doi.org/10.4049/jimmunol.176.9.5652
Mendeley helps you to discover research relevant for your work.