Abstract
The histidine kinase CheA plays a central role in signal integration, conversion, and amplification in the bacterial chemotaxis signal transduction pathway. The kinase activity is regulated in chemotaxis signaling complexes formed via the interactions among CheA's regulatory domain (P5), the coupling protein CheW, and transmembrane chemoreceptors. Despite recent advancements in the understanding of the architecture of the signaling complex, the molecular mechanism underlying this regulation remains elusive. An interdomain linker that connects the catalytic (P4) and regulatory domains of CheA may mediate regulatory signals from the P5-CheWreceptor interactions to the catalytic domain. To investigate whether this interdomain linker is capable of both activating and inhibiting CheA, we performed in vivo screens to search for P4-P5 linker mutations that result in different CheA autokinase activities. Several CheA variants were identified with kinase activities ranging from 30% to 670% of the activity of wild-type CheA. All of these CheA variants were defective in receptor-mediated kinase activation, indicating that the natural receptormediated signal transmission pathway was simultaneously affected by these mutations. The altered P4-P5 linkers were sufficient for making significant changes in the kinase activity even in the absence of the P5 domain. Therefore, the interdomain linker is an active module that has the ability to impose regulatory effects on the catalytic activity of the P4 domain. These results suggest that chemoreceptors may manipulate the conformation of the P4-P5 linker to achieve CheA regulation in the platform of the signaling complex.
Author supplied keywords
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.
Cite
CITATION STYLE
Ding, X., He, Q., Shen, F., Dahlquist, F. W., & Wang, X. (2018). Regulatory role of an interdomain linker in the bacterial chemotaxis histidine kinase CheA. Journal of Bacteriology, 200(10). https://doi.org/10.1128/JB.00052-18
