Phenolic-Rich Plant Extracts With Antimicrobial Activity: An Alternative to Food Preservatives and Biocides?

101Citations
Citations of this article
284Readers
Mendeley users who have this article in their library.

Abstract

In recent years, the search for natural plant-based antimicrobial compounds as alternatives to some synthetic food preservatives or biocides has been stimulated by sanitary, environmental, regulatory, and marketing concerns. In this context, besides their established antioxidant activity, the antimicrobial activity of many plant phenolics deserved increased attention. Indeed, industries processing agricultural plants generate considerable quantities of phenolic-rich products and by-products, which could be valuable natural sources of natural antimicrobial molecules. Plant extracts containing volatile (e.g., essential oils) and non-volatile antimicrobial molecules can be distinguished. Plant essential oils are outside the scope of this review. This review will thus provide an overview of current knowledge regarding the promises and the limits of phenolic-rich plant extracts for food preservation and biofilm control on food-contacting surfaces. After a presentation of the major groups of antimicrobial plant phenolics, of their antimicrobial activity spectrum, and of the diversity of their mechanisms of action, their most promising sources will be reviewed. Since antimicrobial activity reduction often observed when comparing in vitro and in situ activities of plant phenolics has often been reported as a limit for their application, the effects of the composition and the microstructure of the matrices in which unwanted microorganisms are present (e.g., food and/or microbial biofilms) on their activity will be discussed. Then, the different strategies of delivery of antimicrobial phenolics to promote their activity in such matrices, such as their encapsulation or their association with edible coatings or food packaging materials are presented. The possibilities offered by encapsulation or association with polymers of packaging materials or coatings to increase the stability and ease of use of plant phenolics before their application, as well as to get systems for their controlled release are presented and discussed. Finally, the necessity to consider phenolic-rich antimicrobial plant extracts in combination with other factors consistently with hurdle technology principles will be discussed. For instance, several authors recently suggested that natural phenolic-rich extracts could not only extend the shelf-life of foods by controlling bacterial contamination, but could also coexist with probiotic lactic acid bacteria in food systems to provide enhanced health benefits to human.

References Powered by Scopus

Antimicrobial activity of flavonoids

3329Citations
N/AReaders
Get full text

Plant phenolics: Recent advances on their biosynthesis, genetics, andecophysiology

978Citations
N/AReaders
Get full text

Interactions of polyphenols with carbohydrates, lipids and proteins

953Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Biosynthesis of Nanoparticles Using Plant Extracts and Essential Oils

51Citations
N/AReaders
Get full text

Natural Plant Extracts: An Update about Novel Spraying as an Alternative of Chemical Pesticides to Extend the Postharvest Shelf Life of Fruits and Vegetables

41Citations
N/AReaders
Get full text

The Most Potent Natural Pharmaceuticals, Cosmetics, and Food Ingredients Isolated from Plants with Deep Eutectic Solvents

30Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Oulahal, N., & Degraeve, P. (2022, January 4). Phenolic-Rich Plant Extracts With Antimicrobial Activity: An Alternative to Food Preservatives and Biocides? Frontiers in Microbiology. Frontiers Media S.A. https://doi.org/10.3389/fmicb.2021.753518

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 58

56%

Researcher 21

20%

Lecturer / Post doc 16

16%

Professor / Associate Prof. 8

8%

Readers' Discipline

Tooltip

Agricultural and Biological Sciences 41

43%

Biochemistry, Genetics and Molecular Bi... 23

24%

Chemistry 19

20%

Engineering 13

14%

Save time finding and organizing research with Mendeley

Sign up for free