A cellular model of memory reconsolidation involves reactivation-induced destabilization and restabilization at the sensorimotor synapse in Aplysia

73Citations
Citations of this article
121Readers
Mendeley users who have this article in their library.

Abstract

The memory reconsolidation hypothesis suggests that a memory trace becomes labile after retrieval and needs to be reconsolidated before it can be stabilized. However, it is unclear from earlier studies whether the same synapses involved in encoding the memory trace are those that are destabilized and restabilized after the synaptic reactivation that accompaniesmemory retrieval, orwhether newand different synapses are recruited. To address this issue, we studied a simple nonassociative form of memory, long-term sensitization of the gill- and siphon-withdrawal reflex in Aplysia, and its cellular analog, long-term facilitation at the sensory-to-motor neuron synapse. We found that after memory retrieval, behavioral long-term sensitization in Aplysia becomes labile via ubiquitin/proteasome-dependent protein degradation and is reconsolidated by means of de novo protein synthesis. In parallel, we found that on the cellular level, long-term facilitation at the sensory-to-motor neuron synapse that mediates long-term sensitization is also destabilized by protein degradation and is restabilized by protein synthesis after synaptic reactivation, a procedure that parallels memory retrieval or retraining evident on the behavioral level. These results provide direct evidence that the same synapses that store the long-term memory trace encoded by changes in the strength of synaptic connections critical for sensitization are disrupted and reconstructed after signal retrieval.

Cite

CITATION STYLE

APA

Lee, S. H., Kwak, C., Shim, J., Kim, J. E., Choi, S. L., Kim, H. F., … Kaang, B. K. (2012). A cellular model of memory reconsolidation involves reactivation-induced destabilization and restabilization at the sensorimotor synapse in Aplysia. Proceedings of the National Academy of Sciences of the United States of America, 109(35), 14200–14205. https://doi.org/10.1073/pnas.1211997109

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free