A Fraction of CD8+ T Cells from Colorectal Liver Metastases Preferentially Repopulate Autologous Patient-Derived Xenograft Tumors as Tissue-Resident Memory T Cells

7Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

The diversity of T cells in the human liver may reflect the composition of TILs in CRLM. Our ex vivo characterization of CRLM vs. adjacent liver tissue detected CD103+CD39+CD8+ TRM cells predominantly in CRLM, which prompted further assessments. These TRM cells responded to cognate antigens in vitro. As functional activities of autologous TILs are central to the implementation of personalized cancer treatments, we applied a patient‐derived xenograft (PDX) model to monitor TILs’ capacity to control CRLM‐derived tumors in vivo. We established PDX mice with CRLMs from two patients, and in vitro expansion of their respective TILs resulted in opposing CD4+ vs. CD8+ TIL ratios. These CRLMs also displayed mutated KRAS, which enabled trametinib-mediated inhibition of MEK. Regardless of the TIL subset ratio, persistent or transient control of CRLM‐derived tumors of limited size by the transferred TILs was observed only after trametinib treatment. Of note, a portion of transferred TILs was observed as CD103+CD8+ TRM cells that strictly accumulated within the autologous CRLM‐derived tumor rather than in the spleen or blood. Thus, the predominance of CD103+CD39+CD8+ TRM cells in CRLM relative to the adjacent liver and the propensity of CD103+CD8+ TRM cells to repopulate the autologous tumor may identify these TILs as strategic targets for therapies against advanced CRC.

Cite

CITATION STYLE

APA

Liang, F., Nilsson, L. M., Byvald, F., Rezapour, A., Taflin, H., Nilsson, J. A., & Yrlid, U. (2022). A Fraction of CD8+ T Cells from Colorectal Liver Metastases Preferentially Repopulate Autologous Patient-Derived Xenograft Tumors as Tissue-Resident Memory T Cells. Cancers, 14(12). https://doi.org/10.3390/cancers14122882

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free