Accurate and continuous monitoring of leaf area index (LAI), a widely-used vegetation structural parameter, is crucial to characterize crop growth conditions and forecast crop yield. Meanwhile, advancements in collecting field LAI measurements have provided strong support for validating remote-sensing-derived LAI. This paper evaluates the performance of LAI retrieval from multi-source, remotely sensed data through comparisons with continuous field LAI measurements. Firstly, field LAI was measured continuously over periods of time in 2018 and 2019 using LAINet, a continuous LAI measurement system deployed using wireless sensor network (WSN) technology, over an agricultural region located at the Heihe watershed at northwestern China. Then, cloud-free images from optical satellite sensors, including Landsat 7 the Enhanced Thematic Mapper Plus (ETM+), Landsat 8 the Operational Land Imager (OLI), and Sentinel-2A/B Multispectral Instrument (MSI), were collected to derive LAI through inversion of the PROSAIL radiation transfer model using a look-up-table (LUT) approach. Finally, field LAI data were used to validate the multi-temporal LAI retrieved from remote-sensing data acquired by different satellite sensors. The results indicate that good accuracy was obtained using different inversion strategies for each sensor, while Green Chlorophyll Index (CIgreen) and a combination of three red-edge bands perform better for Landsat 7/8 and Sentinel-2 LAI inversion, respectively. Furthermore, the estimated LAI has good consistency with in situ measurements at vegetative stage (coefficient of determination R2 = 0.74, and root mean square error RMSE = 0.53 m2 m−2). At the reproductive stage, a significant underestimation was found (R2 = 0.41, and 0.89 m2 m−2 in terms of RMSE). This study suggests that time-series LAI can be retrieved from multi-source satellite data through model inversion, and the LAINet instrument could be used as a low-cost tool to provide continuous field LAI measurements to support LAI retrieval.
CITATION STYLE
Yu, L., Shang, J., Cheng, Z., Gao, Z., Wang, Z., Tian, L., … Qu, Y. (2020). Assessment of cornfield LAI retrieved from multi-source satellite data using continuous field LAI measurements based on a wireless sensor network. Remote Sensing, 12(20), 1–19. https://doi.org/10.3390/rs12203304
Mendeley helps you to discover research relevant for your work.