Enhanced antithrombotic effect of hirudin by bovine serum albumin nanoparticles

5Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The aim of this study was to design hirudin-loaded bovine serum albumin (BSA) nanoparticles to control release and improve antithrombotic effect of hirudin. BSA nanoparticles were designed as carriers for delivery of hirudin. Hirudin–BSA nanoparticles were prepared by a desolvation procedure and cross linked on the wall material of BSA. The hirudin–BSA nanoparticles were characterised by particle size distribution, zeta potential, entrapment efficiency, differential scanning calorimetry (DSC), and powder X-ray diffractometry (PXRD). The in vitro release characteristics and pharmacological availability were investigated. The morphology of hirudin–BSA nanoparticles was approximately spherical. The mean particle size was 164.1 ± 5.40 nm and the zeta potential was −20.41 ± 0.64 mV. The mean entrapment efficiency and drug loading were 85.14% ± 4.79% and 66.38% ± 3.54%, respectively. Results from DSC and PXRD revealed that hirudin in BSA existed in an amorphous state. The release behaviours of hirudin from BSA nanoparticles in phosphate buffer solution were fitted to the bioexponential model. The in vivo result obtained after intravenous injection of hirudin–BSA nanoparticles in normal rats demonstrated that BSA nanoparticles could prolong the antithrombotic effect of hirudin in comparison with hirudin solution. These results suggest that hirudin–BSA nanoparticles may be a promising drug delivery system for thrombosis and disseminated intravascular coagulation therapy.

Cite

CITATION STYLE

APA

Jing, F., Xu, W., Liu, D., Wang, C., & Sui, Z. (2016). Enhanced antithrombotic effect of hirudin by bovine serum albumin nanoparticles. Journal of Experimental Nanoscience, 11(8), 619–629. https://doi.org/10.1080/17458080.2015.1104925

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free