Automatic segmentation of skeletal muscles from MR images using modified U-Net and a novel data augmentation approach

4Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Rapid and accurate muscle segmentation is essential for the diagnosis and monitoring of many musculoskeletal diseases. As gold standard, manual annotation suffers from intensive labor and high inter-operator reproducibility errors. In this study, deep learning (DL) based automatic muscle segmentation from MR scans is investigated for post-menopausal women, who normally experience a decline in muscle volume. The performance of four Deep Learning (DL) models was evaluated: U-Net and UNet++ and two modified U-Net networks, which combined feature fusion and attention mechanisms (Feature-Fusion-UNet, FFU, and Attention-Feature-Fusion-UNet, AFFU). The models were tested for automatic segmentation of 16-lower limb muscles from MRI scans of two cohorts of post-menopausal women (11 subjects in PMW-1, 8 subjects in PMW-2; from two different studies so considered independent datasets) and 10 obese post-menopausal women (PMW-OB). Furthermore, a novel data augmentation approach is proposed to enlarge the training dataset. The results were assessed and compared by using the Dice similarity coefficient (DSC), relative volume error (RVE), and Hausdorff distance (HD). The best performance among all four DL models was achieved by AFFU (PMW-1: DSC 0.828 ± 0.079, 1-RVE 0.859 ± 0.122, HD 29.9 mm ± 26.5 mm; PMW-2: DSC 0.833 ± 0.065, 1-RVE 0.873 ± 0.105, HD 25.9 mm ± 27.9 mm; PMW-OB: DSC 0.862 ± 0.048, 1-RVE 0.919 ± 0.076, HD 34.8 mm ± 46.8 mm). Furthermore, the augmentation of data significantly improved the DSC scores of U-Net and AFFU for all 16 tested muscles (between 0.23% and 2.17% (DSC), 1.6%–1.93% (1-RVE), and 9.6%–19.8% (HD) improvement). These findings highlight the feasibility of utilizing DL models for automatic segmentation of muscles in post-menopausal women and indicate that the proposed augmentation method can enhance the performance of models trained on small datasets.

Cite

CITATION STYLE

APA

Lin, Z., Henson, W. H., Dowling, L., Walsh, J., Dall’Ara, E., & Guo, L. (2024). Automatic segmentation of skeletal muscles from MR images using modified U-Net and a novel data augmentation approach. Frontiers in Bioengineering and Biotechnology, 12. https://doi.org/10.3389/fbioe.2024.1355735

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free