Characterization of the Mitogen-activated Protein Kinase Kinase 4 (MKK4)/c-Jun NH2-terminal kinase 1 and MKK3/p38 Pathways Regulated by MEK Kinases 2 and 3

  • Deacon K
  • Blank J
N/ACitations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We previously reported the isolation of cDNAs encoding two mammalian mitogen-activated protein kinase (MAPK)/extracellular-regulated kinase (ERK) kinase kinases, designated MEKK2 and MEKK3 (Blank, J.L., Gerwins, P., Elliott, E.M., Sather, S. and Johnson, G.L. (1996) J. Biol. Chem. 271, 5361-5368). In the present study, cotransfection experiments were used to examine the regulation by MEKK2 and MEKK3 of the dual specificity MAP kinase kinases, MKK3 and MKK4. MKK3 specifically phosphorylates and activates p38, whereas MKK4 phosphorylates and activates both p38 and JNK. Coexpression of MEKK2 or MEKK3 with MKK4 in COS-7 cells resulted in activation of MKK4, as assessed by enhanced autophosphorylation and by its ability to phosphorylate and activate recombinant JNK1 or p38 in vitro. MKK3 autophosphorylation and activation of p38 was also observed following coexpression of MKK3 with MEKK3, but not with MEKK2. Consistent with these observations, immunoprecipitated MEKK2 directly activated recombinant MKK4 in vitro but failed to activate MKK3. The sites of activating phosphorylation in MKK3 and MKK4 were identified within kinase subdomains VII and VIII. Replacement of Ser189 or Thr193 in MKK3 with Ala abolished autophosphorylation and activation of MKK3 by MEKK3. Analogous mutations in MKK4 indicated that Ser221 and, to a lesser extent, Thr225 were necessary for MKK4 activation by MEKK2 and MEKK3. These data indicate that MKK3 is preferentially activated by MEKK3, whereas MKK4 is activated both by MEKK2 and MEKK3. Consistent with these observations, MEKK2 and MEKK3 also activated JNK1 in vivo. However, MEKK3 failed to activate p38 when coexpressed in either the absence or presence of MKK3, indicating that MEKK3 is not coupled to p38 activation in vivo. These observations suggest that regulation of p38 and JNK1 pathways by MEKK3 may involve distinct mechanisms to prevent p38 activation but to allow JNK1 activation.

Cite

CITATION STYLE

APA

Deacon, K., & Blank, J. L. (1997). Characterization of the Mitogen-activated Protein Kinase Kinase 4 (MKK4)/c-Jun NH2-terminal kinase 1 and MKK3/p38 Pathways Regulated by MEK Kinases 2 and 3. Journal of Biological Chemistry, 272(22), 14489–14496. https://doi.org/10.1074/jbc.272.22.14489

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free