Popular Secp256k1 and Schnorr algorithms offer strong security in current Blockchains. However, they are vulnerable to quantum attacks. To solve this problem, several quantum-resistant algorithms have been proposed. However, the performance evaluations and tangible analyses of these algorithms on current Blockchains have not been studied yet. In this context, a performance analysis of quantum-resistant algorithms on a Blockchain can provide valuable insight into the efficiency of quantum-resistant algorithms in real-world scenarios. To address this need, we prototyped and analyzed a quantum-resistant Blockchain using the Falcon algorithm. Falcon is selected because it provides smaller signature and key size compared to Crystals-Dilithium and Sphincs+. We then measured in real-time the key size, transaction signature size, and transaction verification time. The paper also discusses the potential scalability limitations of the proposed quantum-resistant Blockchain and suggests an approach to select quantum-resistant algorithms based on different Blockchain use cases. Our approach and benchmark results have implications for the future development and adoption of quantum-resistant Blockchains.
CITATION STYLE
Sinai, N. K., & In, H. P. (2024). Performance evaluation of a quantum-resistant Blockchain: a comparative study with Secp256k1 and Schnorr. Quantum Information Processing, 23(3). https://doi.org/10.1007/s11128-024-04272-6
Mendeley helps you to discover research relevant for your work.