We used stochastic simulations and experimental data from E. coli, K. aerogenes, Synechococcus PCC 7002 and Synechocystis PCC 6803 to provide evidence that transcriptional interference via the collision mechanism is likely a prevalent mechanism for bacterial gene regulation. Rifampicin time-series data can be used to globally monitor and quantify collision between sense and antisense transcription-complexes. Our findings also highlight that transcriptional events, such as differential RNA decay, partial termination, and internal transcriptional start sites often deviate from gene annotations. Consequently, within a single gene annotation, there exist transcript segments with varying half-lives and transcriptional properties. To address these complexities, we introduce ‘rifi’, an R-package that analyzes transcriptomic data from rifampicin time series. ‘rifi’ employs a dynamic programming-based segmentation approach to identify individual transcripts, enabling accurate assessment of RNA stability and detection of diverse transcriptional events.
CITATION STYLE
Wanney, W. C., Youssar, L., Kostova, G., & Georg, J. (2023). Improved RNA stability estimation indicates that transcriptional interference is frequent in diverse bacteria. Communications Biology, 6(1). https://doi.org/10.1038/s42003-023-05097-2
Mendeley helps you to discover research relevant for your work.