Annona reticulata is native to South and Central America which has many phytochemical and pharmacological activities suggesting a wide range of clinical application in lieu of cancer chemotherapy. This study provides abundant genomic data for the genetic relationship study, germplasm resources evaluation and varieties selection of A. reticulata. The complete chloroplast genome of A. reticulata was sequenced, assembled, and annotated in this study. The genome size was 201,906 bp and was divided into four regions: a large single-copy region of 69,650 bp, a small single-copy region of 3,014 bp, and two inverted repeat regions of 64,621 bp. A total number of 164 genes were annotated, including 115 protein-coding genes, one pseudogene, 40 tRNA genes, and eight rRNA genes. In terms of gene function, the 164 genes were divided into four major groups: genes for self-replication, photosynthesis, unknown function, and other genes. A maximum likelihood tree based on the chloroplast genome sequences of 24 plant species was constructed. The result of phylogenetic analysis showed that A. cherimola had the closest relationship with A. reticulate.
CITATION STYLE
Niu, Y. feng, Li, K. X., & Liu, J. (2020). Complete chloroplast genome sequence and phylogenetic analysis of Annona reticulata. Mitochondrial DNA Part B: Resources, 5(3), 3558–3560. https://doi.org/10.1080/23802359.2020.1829131
Mendeley helps you to discover research relevant for your work.