Crystal Structures, Photoluminescence, and Magnetism of Two Novel Transition-Metal Complex Cocrystals with Three-Dimensional H-Bonding Organic Framework or Alternating Noncovalent Anionic and Cationic Layers

12Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Cocrystallization may alter material physicochemical properties; thus, the strategy of forming a cocrystal is generally used to improve the material performance for practical applications. In this study, two transition-metal complex cocrystals [Zn(bpy)3]H0.5BDC·H1.5BDC·0.5bpy·3H2O (1) and [Cu2(BDC)(bpy)4]BDC·bpy·2H2O (2) have been achieved using a hydrothermal reaction, where bpy and H2BDC represent 2,2-bipyridine and benzene-1,3-dicarboxylic acid, respectively. Cocrystals were characterized by microanalysis, infrared spectroscopy, and UV-visible spectroscopy. Cocrystal 1 contains five components and crystallizes in a monoclinic space group P21/n. The H0.5BDC1.5-, H1.5BDC0.5-, and H2O molecules construct three-dimensional H-bonding organic framework; the [Zn(bpy)3]2+ coordination cations and uncoordinated bpy molecules reside in channels, where two coordinated bpy ligands in [Zn(bpy)3]2+ and one uncoordinated bpy adopt sandwich-type alignment via π···πstacking interactions. Cocrystal 2 with four components crystallizes in a triclinic space group P-1 to form alternating layers; the binuclear [Cu2(bpy)4(BDC)]2+ cations and uncoordinated bpy molecules build the cationic layers, and the BDC2- species with disordered lattice water molecules form the anionic layers. Cocrystal 1 shows intense photoluminescence at an ambient condition with a quantum yield of 14.96% and decay time of 0.48 ns, attributed to the π∗ → πelectron transition within phenyl/pyridyl rings, and 2 exhibits magnetic behavior of an almost isolated spin system with rather weak antiferromagnetic coupling in the [Cu2(bpy)4(BDC)]2+ cation.

Cite

CITATION STYLE

APA

Gao, X. S., Dai, H. J., Tang, Y., Ding, M. J., Pei, W. B., & Ren, X. M. (2019). Crystal Structures, Photoluminescence, and Magnetism of Two Novel Transition-Metal Complex Cocrystals with Three-Dimensional H-Bonding Organic Framework or Alternating Noncovalent Anionic and Cationic Layers. ACS Omega, 4(7), 12230–12237. https://doi.org/10.1021/acsomega.9b01584

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free