5 wt% Pd/γ-Al2O3 catalysts were prepared by a modified Vortex Method (5-Pd-VM) and Incipient Wetness Method (5-Pd-IWM), and characterized by various techniques (Inductively coupled plasma atomic emission spectroscopy (ICP-AES), N2-physisorption, pulse CO chemisorption, temperature programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), and X-ray diffraction (XRD)) under identical conditions. Both catalysts had similar particle sizes and dispersions; the 5-Pd-VM catalyst had 0.5 wt% more Pd loading (4.6 wt%). The surfaces of both catalysts contained PdO and PdOx with about 7% more PdOx in 5-Pd-VM. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and scanning electron microscope (SEM) images indicated presence of PdO/PdOx nanocrystals (8-10 nm) on the surface of the support. Size distribution by STEM showed presence of smaller nanoparticles (2-5 nm) in 5-Pd-VM. This catalyst was more active in the lower temperature range of 275-325 °C and converted 90% methane at 325 °C. The 5-Pd-VM catalyst was also very stable after 72-hour stability test at 350 °C showing 100% methane conversion, and was relatively resistant to steam deactivation. Hydrogen TPR of 5-Pd-VM gave a reduction peak at 325 °C indicating weaker interactions of the oxidized Pd species with the support. It is hypothesized that smaller particle sizes, uniform particle distribution, and weaker PdO/PdOx interactions with the support may contribute to the higher activity in 5-Pd-VM.
CITATION STYLE
Banerjee, A. C., Golub, K. W., Hakim, M. A., & Billor, M. Z. (2019). Comparative study of the characteristics and activities of Pd/γ-Al2O3catalysts prepared by vortex and incipient wetness methods. Catalysts, 9(4). https://doi.org/10.3390/catal9040336
Mendeley helps you to discover research relevant for your work.