The Properties of Poly(ester amide)s Based on Dimethyl 2,5-Furanedicarboxylate as a Function of Methylene Sequence Length in Polymer Backbone

5Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

A series of poly(ester amide)s based on dimethyl furan 2,5-dicarboxylate (DMFDC), 1,3-propanediol (PDO), 1,6-hexylene glycol (HDO), and 1,3-diaminopropane (DAP) were synthesized via two-step melt polycondensation. The phase transition temperatures and structure of the polymers were studied by differential scanning calorimetry (DSC). The positron annihilation lifetime spectroscopy (PALS) measurement was carried out to investigate the free volume. In addition, the mechanical properties of two series of poly(ester amide)s were analyzed. The increase in the number of methylene groups in the polymer backbone resulted in a decrease in the values of the transition temperatures. Depending on the number of methylene groups and the content of the poly(propylene furanamide) (PPAF), both semi-crystalline and amorphous copolymers were obtained. The free volume value increased with a greater number of methylene groups in the polymer backbone. More-over, with a lower number of methylene groups, the value of the Young modulus and stress at break increased.

Cite

CITATION STYLE

APA

Walkowiak, K., Irska, I., Zubkiewicz, A., Dryzek, J., & Paszkiewicz, S. (2022). The Properties of Poly(ester amide)s Based on Dimethyl 2,5-Furanedicarboxylate as a Function of Methylene Sequence Length in Polymer Backbone. Polymers, 14(11). https://doi.org/10.3390/polym14112295

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free