During aging, acetylcholine receptor (AChR) clusters become fragmented and denervated at the neuromuscular junction (NMJ). Underpinning molecular mechanisms are not well understood. We showed that LRP4, a receptor for agrin and critical for NMJ formation and maintenance, was reduced at protein level in aged mice, which was associated with decreased MuSK tyrosine phosphorylation, suggesting compromised agrin-LRP4-MuSK signaling in aged muscles. Transgenic expression of LRP4 in muscles alleviated AChR fragmentation and denervation and improved neuromuscular transmission in aged mice. LRP4 ubiquitination was augmented in aged muscles, suggesting increased LRP4 degradation as a mechanism for reduced LRP4. We found that sarcoglycan α (SGα) interacted with LRP4 and delayed LRP4 degradation in cotransfected cells. AAV9-mediated expression of SGα in muscles mitigated AChR fragmentation and denervation and improved neuromuscular transmission in aged mice. These observations support a model where compromised agrin-LRP4-MuSK signaling serves as a pathological mechanism of age-related NMJ decline and identify a novel function of SGα in stabilizing LRP4 for NMJ stability in aged mice.
CITATION STYLE
Zhao, K., Shen, C., Li, L., Wu, H., Xing, G., Dong, Z., … Mei, L. (2018). Sarcoglycan alpha mitigates neuromuscular junction decline in aged mice by stabilizing LRP4. Journal of Neuroscience, 38(41), 8860–8873. https://doi.org/10.1523/JNEUROSCI.0860-18.2018
Mendeley helps you to discover research relevant for your work.