A Parametric Analysis of Capillary Height in Single-Layer, Small-Scale Microfluidic Artificial Lungs

3Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Microfluidic artificial lungs (µALs) are being investigated for their ability to closely mimic the size scale and cellular environment of natural lungs. Researchers have developed µALs with small artificial capillary diameters (10–50 µm; to increase gas exchange efficiency) and with large capillary diameters (~100 µm; to simplify design and construction). However, no study has directly investigated the impact of capillary height on µAL properties. Here, we use Murray’s law and the Hagen-Poiseuille equation to design single-layer, small-scale µALs with capillary heights between 10 and 100 µm. Each µAL contained two blood channel types: capillaries for gas exchange; and distribution channels for delivering blood to/from capillaries. Three designs with capillary heights of 30, 60, and 100 µm were chosen for further modeling, implementation and testing with blood. Flow simulations were used to validate and ensure equal pressures. Designs were fabricated using soft lithography. Gas exchange and pressure drop were tested using whole bovine blood. All three designs exhibited similar pressure drops and gas exchange; however, the µAL with 60 µm tall capillaries had a significantly higher wall shear rate (although physiologic), smaller priming volume and smaller total blood contacting surface area than the 30 and 100 µm designs. Future µAL designs may need to consider the impact of capillary height when optimizing performance.

Cite

CITATION STYLE

APA

Ma, L. J., Akor, E. A., Thompson, A. J., & Potkay, J. A. (2022). A Parametric Analysis of Capillary Height in Single-Layer, Small-Scale Microfluidic Artificial Lungs. Micromachines, 13(6). https://doi.org/10.3390/mi13060822

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free