The TORCH PMT: A close packing, multi-anode, long life MCP-PMT for Cherenkov applications

27Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Photek (U.K.) and the TORCH collaboration are undertaking a three year development program to produce a novel square MCP-PMT for single photon detection. The TORCH detector aims to provide particle identification in the 2-10 GeV/c momentum range, using a Time-of-Flight method based on Cherenkov light. It is a stand-alone R&D project with possible application in LHCb, and has been proposed for the LHCb Upgrade. The Microchannel Plate (MCP) detector will provide a single photon timing accuracy of 40 ps, and its development will include the following properties: (i) Long lifetime up to at least 5 C/cm 2; (ii) Multi-anode output with a spatial resolution of 6 mm and 0.4 mm respectively in the horizontal and vertical directions, incorporating a novel charge-sharing technique; (iii) Close packing on two opposing sides with an active area fill factor of 88% in the horizontal direction. Results from simulations modelling the MCP detector performance factoring in the pulse height variation from the detector, NINO threshold levels and potential charge sharing techniques that enhance the position resolution beyond the physical pitch of the pixel layout will be discussed. Also, a novel method of coupling the MCP-PMT output pads using Anisotropic Conductive Film (ACF) will be described. This minimises parasitic input capacitance by allowing very close proximity between the frontend electronics and the MCP detector.

Cite

CITATION STYLE

APA

Conneely, T. M., Van Dijk, M. W. U., D’Ambrosio, C., Brook, N., García, L. C., Cowie, E. N., … Slatter, C. (2015). The TORCH PMT: A close packing, multi-anode, long life MCP-PMT for Cherenkov applications. Journal of Instrumentation, 10(5). https://doi.org/10.1088/1748-0221/10/05/C05003

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free