This paper tests various propositions underlying claims that observed global temperature change is mostly attributable to anthropogenic noncondensing greenhouse gases, and that although water vapour is recognized to be a dominant contributor to the overall greenhouse gas (GHG) effect, that effect is merely a feedback from rising temperatures initially resulting only from non-condensing GHGs and not at all from variations in preexisting naturally caused atmospheric water vapour (i.e., [H2O]). However, this paper shows that initial radiative forcing is not exclusively attributable to forcings from noncondensing GHG, both because atmospheric water vapour existed before there were any significant increases in GHG concentrations or temperatures and also because there is no evidence that such increases have produced measurably higher [H 2O]. The paper distinguishes between forcing and feedback impacts of water vapour and contends that it is the primary forcing agent, at much more than 50 of the total GHG gas effect. That means that controlling atmospheric carbon dioxide is unlikely to be an effective control knob as claimed by Lacis et al. (2010). Copyright © 2012 Timothy Curtin.
CITATION STYLE
Curtin, T. (2012). Applying econometrics to the carbon dioxide control knob. The Scientific World Journal, 2012. https://doi.org/10.1100/2012/761473
Mendeley helps you to discover research relevant for your work.