Processing in-memory breaks von Neumann-based constructs to accelerate data-intensive applications. Noteworthy efforts have been devoted to executing Boolean logic using digital in-memory computing. The limitation of state-of-the-art paradigms is that they heavily rely on repeatedly switching the state of the non-volatile resistive devices using expensive WRITE operations. In this paper, we propose a new in-memory computing paradigm called path-based computing for evaluating Boolean logic. Computation within the paradigm is performed using a one-time expensive compile phase and a fast and efficient evaluation phase. The key property of the paradigm is that the execution phase only involves cheap READ operations. Moreover, a synthesis tool called PATH is proposed to automatically map computation to a single crossbar design. The PATH tool also supports the synthesis of path-based computing systems where the total number of crossbars and the number of inter-crossbar connections are minimized. We evaluate the proposed paradigm using 10 circuits from the RevLib benchmark suite. Compared with state-of-the-art digital in-memory computing paradigms, path-based computing improves energy and latency up to 4.7X and 8.5X, respectively.
CITATION STYLE
Thijssen, S., Jha, S. K., & Ewetz, R. (2022). PATH: Evaluation of Boolean Logic using Path-based In-Memory Computing. In Proceedings - Design Automation Conference (pp. 1129–1134). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1145/3489517.3530596
Mendeley helps you to discover research relevant for your work.