Interaction between maternal effect and zygotic effect mutations during maize seed development

46Citations
Citations of this article
42Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Double fertilization of the embryo sac by the two sperm cells of a pollen grain initiates seed development. Proper development of the seed depends not only on the action of genes from the resulting embryo and endosperm, but also on maternal genes acting at two stages. Mutations with both sporophytic maternal effects and gametophytic maternal effects have been identified. A new maternal effect mutation in maize, maternal effect lethal 1 (mel1), causes the production of defective seed from mutant female gametophytes. It shows reduced pollen transmission, suggesting a requirement in the male gametophyte, but has no paternal effect on seed development. Interestingly, the defective kernel phenotype of mel1 is conditioned only in seeds that inherit mel1 maternally and are homozygous for the recessive allele (endogenous to the W22 inbred line) of either of two genes, sporophyte enhancer of mel1 (snm1) or snm2, suggesting redundancy between maternally and zygotically required genes. Both mel1 and snm1 map to the short arm of chromosome 2, and snm2 maps to the long arm of chromosome 10. The mode of action of mel1 and the relationship between mel1 and snm1 and snm2 are discussed.

Cite

CITATION STYLE

APA

Evans, M. M. S., & Kermicle, J. L. (2001). Interaction between maternal effect and zygotic effect mutations during maize seed development. Genetics, 159(1), 303–315. https://doi.org/10.1093/genetics/159.1.303

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free