Characterization and site-directed mutation of a novel aldo–keto reductase from Lodderomyces elongisporus NRRL YB-4239 with high production rate of ethyl (R)-4-chloro-3-hydroxybutanoate

20Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A novel aldo–keto reductase (LEK) from Lodderomyces elongisporus NRRL YB-4239 (ATCC 11503) was discovered by genome database mining for carbonyl reduction. LEK was overexpressed in Escherichia coli BL21 (DE3), purified to homogeneity and the catalytic properties were studied. Among the substrates, ethyl 4-chloro-3-oxobutanoate was converted to ethyl (R)-4-chloro-3- hydroxybutanoate ((R)-CHBE), an important pharmaceutical intermediate, with an excellent enantiomeric excess (e.e.) (>99 %). The mutants W28A and S209G obtained by site-directed mutation were identified with much higher molar conversion yields and lower Km values. Further, the constructed coenzyme regeneration system with glucose as co-substrate resulted in a yield of 100 %, an enantioselectivity of >99 %, and the calculated production rate of 56.51 mmol/L/H. These results indicated the potential of LEK for the industrial production of (R)-CHBE and other valuable chiral alcohols.

Cite

CITATION STYLE

APA

Wang, Q., Ye, T., Ma, Z., Chen, R., Xie, T., & Yin, X. (2014). Characterization and site-directed mutation of a novel aldo–keto reductase from Lodderomyces elongisporus NRRL YB-4239 with high production rate of ethyl (R)-4-chloro-3-hydroxybutanoate. Journal of Industrial Microbiology and Biotechnology, 41(11), 1609–1616. https://doi.org/10.1007/s10295-014-1502-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free