A new generation of multipurpose measurement equipment is transforming the role of computers in instrumentation. The new features involve mixed devices, such as kinds of sensors, analog-to-digital and digital-to-analog converters, and digital signal processing techniques, that are able to substitute typical discrete instruments like multimeters and analyzers. Signal-processing applications frequently use least-squares (LS) sine-fitting algorithms. Periodic signals may be interpreted as a sum of sine waves with multiple frequencies: the Fourier series. This paper describes a new sine fitting algorithm that is able to fit a multiharmonic acquired periodic signal. By means of a "sinusoidal wave" whose amplitude and phase are both transient, the "triangular wave" can be reconstructed on the basis of Hilbert-Huang transform (HHT). This method can be used to test effective number of bits (ENOBs) of analog-to-digital converter (ADC), avoiding the trouble of selecting initial value of the parameters and working out the nonlinear equations. The simulation results show that the algorithm is precise and efficient. In the case of enough sampling points, even under the circumstances of low-resolution signal with the harmonic distortion existing, the root mean square (RMS) error between the sampling data of original "triangular wave" and the corresponding points of fitting "sinusoidal wave" is marvelously small. That maybe means, under the circumstances of any periodic signal, that ENOBs of high-resolution ADC can be tested accurately. © 2013 Hui Wang et al.
CITATION STYLE
Wang, H., Liu, Z., Zhu, B., & Song, Q. (2013). Multiple harmonics fitting algorithms applied to periodic signals based on hilbert-huang transform. Journal of Sensors, 2013. https://doi.org/10.1155/2013/580152
Mendeley helps you to discover research relevant for your work.