Spatial attention during saccade decisions

15Citations
Citations of this article
37Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Behavioral measures of decision making are usually limited to observations of decision outcomes. In the present study, we made use of the fact that oculomotor and sensory selection are closely linked to track oculomotor decision making before oculomotor responses are made. We asked participants to make a saccadic eye movement to one of two memorized target locations and observed that visual sensitivity increased at both the chosen and the nonchosen saccade target locations, with a clear bias toward the chosen target. The time course of changes in visual sensitivity was related to saccadic latency, with the competition between the chosen and nonchosen targets resolved faster before short-latency saccades. On error trials, we observed an increased competition between the chosen and nonchosen targets. Moreover, oculomotor selection and visual sensitivity were influenced by top-down and bottom-up factors as well as by selection history and predicted the direction of saccades. Our findings demonstrate that saccade decisions have direct visual consequences and show that decision making can be traced in the human oculomotor system well before choices are made. Our results also indicate a strong association between decision making, saccade target selection, and visual sensitivity. NEW & NOTEWORTHY We show that saccadic decisions can be tracked by measuring spatial attention. Spatial attention is allocated in parallel to the two competing saccade targets, and the time course of spatial attention differs for fast-slow and for correct-erroneous decisions. Saccade decisions take the form of a competition between potential saccade goals, which is associated with spatial attention allocation to those locations.

Cite

CITATION STYLE

APA

Jonikaitis, D., Klapetek, A., & Deubel, H. (2017). Spatial attention during saccade decisions. Journal of Neurophysiology, 118(1), 149–160. https://doi.org/10.1152/jn.00665.2016

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free