New Zealand straddles the boundary between the Australian and Pacific Plate. Cenozoic relative plate motion has resulted in a complex pattern of faulting and block rotation in a zone of continental lithosphere up to 250 km wide. I investigate the implications of the short-term kinematics for the strength of the deforming lithosphere. I use a compilation of seismic reflection/refraction studies and high quality receiver function analyses to determine both the regional structure of the crust, which ranges from 20 to 50 km thick, and fields of buoyancy stress (or GPE per unit volume). Deformation over thousands of years is quantified in terms of velocity and strain rate fields, based on an inversion of neotectonic fault slip and palaeomagnetic data, in the context of the short-term relative plate motions. Forces on the subduction megathrust, as well as deviatoric stresses in the behind subduction region, are calculated from simple 2-D force balances across the Hikurangi Margin, given negligible deviatoric stresses at the along-strike transition between backarc extension and compression. Average megathrust shear stresses are in the range 6-15 MPa, and average lithospheric stresses <20 MPa in the overriding plate. The regional lithospheric strength of the plate boundary zone, assuming a viscous rheology (Newtonian or power law), is determined from an inversion of the field of gradients of buoyancy stress (averaged over either the top 25 km of the crust, or 100-km-thick lithosphere) and strain rate, using the thin sheet stress balance equations, calibrated with the subduction force balance analysis. Effective viscosities for the deforming lithosphere and/or crust are in the range 0.1-5 × 1021 Pa s, with marked weakening in zones of high strain rate, and an abrupt transition to viscosities >1022 Pa s at the margins of the rigid plates. If lateral variations in effective viscosity are only due to non-Newtonian behaviour, these data indicate a bulk power law rheology, with exponent n in the range 2-6. Average lithospheric or crustal deviatoric stresses <30 MPa. Such low driving stresses for the deforming crust are likely to be the result of a combination of pore fluid pressures much greater than hydrostatic (≫40 per cent lithostatic) and low coefficients of friction (≪0.6) on crustal faults.
CITATION STYLE
Lamb, S. (2015). Kinematics to dynamics in the New Zealand Plate boundary zone: Implications for the strength of the lithosphere. Geophysical Journal International, 201(2), 552–573. https://doi.org/10.1093/gji/ggv027
Mendeley helps you to discover research relevant for your work.