In vitro and in vivo photosensitizing capabilities of 5-ALA versus Photofrin® in vascular endothelial cells

38Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Background and Objective: The objective of the present study was to evaluate the feasibility of photodynamic therapy (PDT) for complicated hemangiomas. The photosensitizing activities of 5-aminolevulinic acid (5- ALA) and Photofrin® were evaluated in vitro with human dermal microvascular endothelial cells (MEC) and in vivo with the chicken cox comb. Study Design/Materials and Methods: The in vitro absorption and photosensitizing activities of 5-ALA and Photofrin® were examined in a MEC culture system. The percentages of MEC killed by different drug concentrations at a wavelength of 630 nm were measured by either live/dead or lactate dehydrogenase-released assays. Similarly, the in vivo biological activities of 5-ALA and Photofrin® exposed to different total light dosages at 630 nm were studied by determining the amount of necrosis produced in chicken combs. Results: MEC incubated with 5-ALA at a concentration of 35 μg/ml and exposed to laser light at 630 nm at a power density of 100 mW/cm2 showed a 50% cell kill. MEC incubated with Photofrin® at a concentration of 3.5 μg/ml and exposed to laser light at 630 nm at a power density of 100 mW/cm2 showed a 50% cell kill. Chicken combs that received 200 mg/kg of 5-ALA exposed to laser light at 630 nm at a power density of 100 mW/cm2 had an injury depth of 362.5 ± 27.6 μm at histologic examination. Combs exposed to a power density of 100 or 120 mW/cm2 showed injury depths of 732.5 ± 29.1 and 792.5 ± 36.0 μm, respectively. Chicken combs that received 2.5 mg/kg of Photofrin® exposed to laser light at 630 nm at a power density of 80 mW/cm2 had an injury depth of 535.6 ± 22.3 μm at histologic examination. Combs exposed to a power density of 100 or 120 mW/cm2 showed injury depths of 795.8 ± 32.5 and 805.2 ± 49.1 μm, respectively. Conclusion: Both 5-ALA and Photofrin® have the capability to destroy MEC in vitro and vasculature in vivo. However, Photo 5-ALA and Photofrin® in Vascular Endothelial Cells frin® achieved a higher degree of cell kill and tissue destruction at lower drug concentrations and at lower power densities.

Cite

CITATION STYLE

APA

Chang, C. J., Sun, C. H., Liaw, L. H. L., Berns, M. W., & Nelson, J. S. (1999). In vitro and in vivo photosensitizing capabilities of 5-ALA versus Photofrin® in vascular endothelial cells. Lasers in Surgery and Medicine, 24(3), 178–186. https://doi.org/10.1002/(SICI)1096-9101(1999)24:3<178::AID-LSM2>3.0.CO;2-W

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free