Nilpotent fusion categories

71Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

In this paper we extend categorically the notion of a finite nilpotent group to fusion categories. To this end, we first analyze the trivial component of the universal grading of a fusion category C, and then introduce the upper central series of C. For fusion categories with commutative Grothendieck rings (e.g., braided fusion categories) we also introduce the lower central series. We study arithmetic and structural properties of nilpotent fusion categories, and apply our theory to modular categories and to semisimple Hopf algebras. In particular, we show that in the modular case the two central series are centralizers of each other in the sense of M. Müger. © 2007 Elsevier Inc. All rights reserved.

Cite

CITATION STYLE

APA

Gelaki, S., & Nikshych, D. (2008). Nilpotent fusion categories. Advances in Mathematics, 217(3), 1053–1071. https://doi.org/10.1016/j.aim.2007.08.001

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free