Error estimate evaluation in numerical approximations of partial differential equations: A pilot study using data mining methods

9Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

In this Note, we propose a new methodology based on exploratory data mining techniques to evaluate the errors due to the description of a given real system. First, we decompose this description error into four types of sources. Then, we construct databases of the entire information produced by different numerical approximation methods, to assess and compare the significant differences between these methods, using techniques like decision trees, Kohonen's cards, or neural networks. As an example, we characterize specific states of the real system for which we can locally appreciate the accuracy between two kinds of finite elements methods. In this case, this allowed us to precise the classical Bramble-Hilbert theorem that gives a global error estimate, whereas our approach gives a local error estimate. © 2013.

Cite

CITATION STYLE

APA

Assous, F., & Chaskalovic, J. (2013). Error estimate evaluation in numerical approximations of partial differential equations: A pilot study using data mining methods. Comptes Rendus - Mecanique, 341(3), 304–313. https://doi.org/10.1016/j.crme.2013.01.002

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free