We have previously demonstrated that administration of the recently described cytokine IL-17 in rat airways in vivo recruits and activates neutrophils locally. In the current study, we examined whether endogenous IL-17 is involved in mediating neutrophil recruitment caused by endotoxin exposure in mouse airways. Our in vivo data show that local endotoxin exposure causes the release of free, soluble IL-17 protein 6 h later. Systemic pretreatment with a neutralizing anti-IL-17 Ab almost completely inhibits neutrophil recruitment 24 h, but not 6 h, after endotoxin exposure in the airways. Pretreatment with neutralizing anti-IL-6 and anti-macrophage inflammatory protein (MIP)-2 Abs inhibits neutrophil recruitment caused by local endotoxin exposure and IL-17, respectively. Our in vitro data show that endotoxin exposure stimulates the release of soluble IL-17 protein in T lymphocytes harvested from lung and spleen, respectively, and that this cytokine release requires coculture with airway macrophages. Intracellular IL-17 protein is detected in T lymphocytes from spleen but not in airway macrophages after coculture and stimulation of these two cell types. Finally, anti-IL-17 does not alter endotoxin-induced release of IL-6 and MIP-2 from T lymphocytes and airway macrophages in coculture. In conclusion, our results indicate that endotoxin exposure causes the release of IL-17 from T lymphocytes and that this cytokine release requires the presence of macrophages. Once released, endogenous IL-17 acts in part by inducing local release of neutrophil-mobilizing cytokines such as IL-6 and MIP-2, from nonlymphocyte, nonmacrophage cells, and this contributes to recruitment of neutrophils in the airways. These IL-17-related mechanisms constitute potential targets for pharmacotherapy against exaggerated neutrophil recruitment in airway disease.
CITATION STYLE
Miyamoto, M., Prause, O., Sjöstrand, M., Laan, M., Lötvall, J., & Lindén, A. (2003). Endogenous IL-17 as a Mediator of Neutrophil Recruitment Caused by Endotoxin Exposure in Mouse Airways. The Journal of Immunology, 170(9), 4665–4672. https://doi.org/10.4049/jimmunol.170.9.4665
Mendeley helps you to discover research relevant for your work.