Fatigue crack growth behavior of surface crack in rails

25Citations
Citations of this article
39Readers
Mendeley users who have this article in their library.

Abstract

Rolling contact fatigue damages on the surface of rail such as head check, squats are one of growing problems. Since rail fracture can cause derailment with loss of life and property, the understanding of rail fracture mechanisms is important for reducing damages on the surface of rail. In this study, a two-dimentsional computational model was used to simulate the fatigue crack growth behavior at the surface of rail. The model considers the moving contact pressure and tangential force. Normal pressure of 1100MPa along with traction ratio in the range of -0.4 to 0.4 were investigated for a varing crack size. It has been revealed that the crack growth rate increases with increasing the crack length and start to decrease after a certain depth. When the traction force is applied, the crack growth rate increases to the depth of ab=0.3 but is similar over the depth of ab=0.3 regardless of the magnitude of traction coefficient. However, in case the braking force is applied, the crack growth rate dramatically increases with increasing the crack length. © 2010 Published by Elsevier Ltd.

Cite

CITATION STYLE

APA

Seo, J., Kwon, S., Jun, H., & Lee, D. (2010). Fatigue crack growth behavior of surface crack in rails. In Procedia Engineering (Vol. 2, pp. 865–872). https://doi.org/10.1016/j.proeng.2010.03.093

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free