A brief theory of epidemic kinetics

3Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.

Abstract

In the context of the COVID-19 epidemic, and on the basis of the Theory of Dynamical Systems, we propose a simple theoretical approach for the expansion of contagious diseases, with a particular focus on viral respiratory tracts. The infection develops through contacts between contagious and exposed people, with a rate proportional to the number of contagious and of non-immune individuals, to contact duration and turnover, inversely proportional to the efficiency of protection measures, and balanced by the average individual recovery response. The obvious initial exponential increase is readily hindered by the growing recovery rate, and also by the size reduction of the exposed population. The system converges towards a stable attractor whose value is expressed in terms of the “reproductive rate” R0, depending on contamination and recovery factors. Various properties of the attractor are examined, and particularly its relations with R0 . Decreasing this ratio below a critical value leads to a tipping threshold beyond which the epidemic is over. By contrast, significant values of the above ratio may bring the system through a bifurcating hierarchy of stable cycles up to a chaotic behaviour.

Cite

CITATION STYLE

APA

Louchet, F. (2020). A brief theory of epidemic kinetics. Biology, 9(6), 1–10. https://doi.org/10.3390/biology9060134

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free