A framework for automatic heart sound analysis without segmentation

104Citations
Citations of this article
94Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: A new framework for heart sound analysis is proposed. One of the most difficult processes in heart sound analysis is segmentation, due to interference form murmurs.Method: Equal number of cardiac cycles were extracted from heart sounds with different heart rates using information from envelopes of autocorrelation functions without the need to label individual fundamental heart sounds (FHS). The complete method consists of envelope detection, calculation of cardiac cycle lengths using auto-correlation of envelope signals, features extraction using discrete wavelet transform, principal component analysis, and classification using neural network bagging predictors.Result: The proposed method was tested on a set of heart sounds obtained from several on-line databases and recorded with an electronic stethoscope. Geometric mean was used as performance index. Average classification performance using ten-fold cross-validation was 0.92 for noise free case, 0.90 under white noise with 10 dB signal-to-noise ratio (SNR), and 0.90 under impulse noise up to 0.3 s duration.Conclusion: The proposed method showed promising results and high noise robustness to a wide range of heart sounds. However, more tests are needed to address any bias that may have been introduced by different sources of heart sounds in the current training set, and to concretely validate the method. Further work include building a new training set recorded from actual patients, then further evaluate the method based on this new training set. © 2011 Yuenyong et al; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Yuenyong, S., Nishihara, A., Kongprawechnon, W., & Tungpimolrut, K. (2011). A framework for automatic heart sound analysis without segmentation. BioMedical Engineering Online, 10. https://doi.org/10.1186/1475-925X-10-13

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free