A game theoretic approach for power aware middleware

2Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In this paper, we propose a dynamic game theoretic approach for choosing power optimization strategies for various components(e.g. cpu, network interface etc.) of a low-power device operating in a distributed environment. Specifically, we model the energy consumption problem as a dynamic non-cooperative game theoretic problem, where the various components of the device are modelled as the players in the game that simultaneously consume a common resource(device battery power). An analysis for the Nash and social optima of the game is presented. We then introduce an adaptive distributed power-aware middle-ware framework, called "Dynamo", that incorporates the game theoretic approach for determining optimal power optimization strategies. We simulate the distributed game environment for proxy-based video streaming to a mobile handheld device. Our performance results indicate that significant energy savings are achievable for the device when the energy usage of the individual components achieve a social optima than when the energy usage achieves the strategic Nash equilibria. The overall utility of the system is measured both in terms of energy gains and the quality of video playback. Our results indicate that the device lifetime was increased by almost 50%-90% when compared to the case where no power optimization strategies were used, and 30-40% over device life-time when Nash equilibrium is achieved; the overall utility of system for both types of equilibria were similar(utilities differ by ≤ .5%), indicating that the Nash equilibrium strategies tend to overuse the battery energy consumption. Keywords: power optimization, game theory, power-aware middleware © IFIP International Federation for Information Processing 2004.

Cite

CITATION STYLE

APA

Mohapatra, S., & Venkatasubramanian, N. (2004). A game theoretic approach for power aware middleware. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3231, 417–438. https://doi.org/10.1007/978-3-540-30229-2_22

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free