Modulation of Glutathione Hemostasis by Inhibition of 12/15-Lipoxygenase Prevents ROS-Mediated Cell Death after Hepatic Ischemia and Reperfusion

13Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

Abstract

Background. Reactive oxygen species- (ROS-) mediated ischemia-reperfusion injury (IRI) detrimentally impacts liver transplantation and resection. 12/15-Lipoxygenase (12/15-LOX), an antagonistic protein of the glutathione peroxidase 4 (GPX4) signaling cascade, was proven to mediate cell death in postischemic cerebral and myocardial tissue. The aim of this study was to investigate the impact of 12/15-LOX inhibition on hepatic IRI. Methods. Livers of C57BL/6 mice were exposed to 60 minutes of partial warm ischemia and 90 minutes of reperfusion after previous Baicalein administration, an inhibitor of 12/15-LOX. Tissue samples were analyzed by TUNEL assay, Western blot, and spectral photometry. Results. TUNEL labeling showed a significant reduction of hepatic cell death following baicalein pretreatment. Western Blot analysis revealed a significant downregulation of Jun-amino-terminal-kinase (JNK), caspase-3, and poly-ADP-ribose-polymerase (PARP), besides considerably lowered p44/42-MAP-kinase (ERK1/2) expression after Baicalein administration. A significant elevation of glutathione oxidation was measured in Baicalein pretreated livers. Conclusion. Our data show that inhibition of 12/15-lipoxygenase causes significant cell death reduction after hepatic ischemia and reperfusion by enhancing glutathione metabolism. We conclude that GPX4-dependent cell death signaling cascade might play a major role in development of hepatic IRI, in which the investigated proteins JNK, caspase-3, ERK1/2, and PARP might contribute to tissue damage.

Cite

CITATION STYLE

APA

Drefs, M., Thomas, M. N., Guba, M., Angele, M. K., Werner, J., Conrad, M., … Rentsch, M. (2017). Modulation of Glutathione Hemostasis by Inhibition of 12/15-Lipoxygenase Prevents ROS-Mediated Cell Death after Hepatic Ischemia and Reperfusion. Oxidative Medicine and Cellular Longevity, 2017. https://doi.org/10.1155/2017/8325754

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free