Halotropism is a response of plant roots to avoid a saline environment

244Citations
Citations of this article
386Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Tropisms represent fascinating examples of how plants respond to environmental signals by adapting their growth and development. Here, a novel tropism is reported, halotropism, allowing plant seedlings to reduce their exposure to salinity by circumventing a saline environment. In response to a salt gradient, Arabidopsis, tomato, and sorghum roots were found to actively prioritize growth away from salinity above following the gravity axis. Directionality of this response is established by an active redistribution of the plant hormone auxin in the root tip, which is mediated by the PIN-FORMED 2 (PIN2) auxin efflux carrier. We show that salt-induced phospholipase D activity stimulates clathrin-mediated endocytosis of PIN2 at the side of the root facing the higher salt concentration. The intracellular relocalization of PIN2 allows for auxin redistribution and for the directional bending of the root away from the higher salt concentration. Our results thus identify a cellular pathway essential for the integration of environmental cues with auxin-regulated root growth that likely plays a key role in plant adaptative responses to salt stress. © 2013 Elsevier Ltd.

Cite

CITATION STYLE

APA

Galvan-Ampudia, C. S., Julkowska, M. M., Darwish, E., Gandullo, J., Korver, R. A., Brunoud, G., … Testerink, C. (2013). Halotropism is a response of plant roots to avoid a saline environment. Current Biology, 23(20), 2044–2050. https://doi.org/10.1016/j.cub.2013.08.042

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free