The wide adaptation of product line engineering in software industry has enabled cost effective development of high quality software for diverse market segments. In software product line (SPL), a family of software is specified with a set of core assets representing reusable features with their variability, dependencies, and constraints. From such core assets, valid software products are configured after thoroughly analysing the represented features and their properties. However, current implementations of SPL lack effective means to configure a valid product as core assets specified in SPL, being high-dimensional data, are often too complex to analyse. This paper presents a time and cost effective methodology with associated tool supports to design a SPL model, analyse features, and configure a valid product. The proposed approach uses eXtensible Markup Language (XML) to model SPL, where an adequate schema is defined to precisely specify core assets. Furthermore, it enables automated product configuration by (i) extracting all the properties of required features from a given SPL model and calculating them with Alloy Analyzer; (ii) generating a decision model with appropriate eXtensible Stylesheet Language Transformation (XSLT) instructions embedded in each resolution effect; and (iii) processing XSLT instructions of all the selected resolution effects.
CITATION STYLE
Lee, S. U. J. (2015). An Effective Methodology with Automated Product Configuration for Software Product Line Development. Mathematical Problems in Engineering, 2015. https://doi.org/10.1155/2015/435316
Mendeley helps you to discover research relevant for your work.