Typically, female rats demonstrate clear mate choice. Mate preference is driven by the evolutionary need to choose males with heritable parasite resistance and to prevent the transmission of contagious diseases during mating. Thus, females detect and avoid parasitized males. Over evolutionary time scales, parasite-free males plausibly evolve to advertise their status. This arrangement between males and females is obviously detrimental to parasites, especially for sexually transmitted parasites. Yet Toxoplasma gondii, a sexually transmitted parasite, gets around this obstacle by manipulating mate choice of uninfected females. Males infected with this parasite become more attractive to uninfected females. The ability of T. gondii to not only advantageously alter the behavior and physiology of its host but also secondarily alter the behavior of uninfected females presents a striking example of the 'extended phenotype' of parasites. Toxoplasma gondii also abolishes the innate fear response of rats to cat odor; this likely increases parasite transmission through the trophic route. It is plausible that these two manipulations are not two distinct phenotypes, but are rather part of a single pattern built around testosterone-mediated interplay between mate choice, parasitism and predation. © 2013 Published by The Company of Biologists Ltd.
CITATION STYLE
Vyas, A. (2013, January). Parasite-augmented mate choice and reduction in innate fear in rats infected by Toxoplasma gondii. Journal of Experimental Biology. https://doi.org/10.1242/jeb.072983
Mendeley helps you to discover research relevant for your work.