Bovine milk extracellular vesicles (EVs) modification elicits skeletal muscle growth in rats

29Citations
Citations of this article
54Readers
Mendeley users who have this article in their library.

Abstract

The current study investigated how bovine milk extracellular vesicles (EVs) affected rotarod performance and biomarkers of skeletal muscle physiology in young, growing rats. Twenty-eight-day Fisher 344 rats were provided an AIN-93G-based diet for 4 weeks that either remained unadulterated [EVs and RNA-sufficient (ERS; n = 12)] or was sonicated [EVs and RNA-depleted (ERD; n = 12)]. Prior to (PRE) and on the last day of the intervention (POST), animals were tested for maximal rotarod performance. Following the feeding period, the gastrocnemius muscle was analyzed at the histological, biochemical, and molecular levels and was also used to measure mitochondrial function and reactive oxygen species (ROS) emission. A main effect of time was observed for rotarod time (PRE > POST, p = 0.001). Terminal gastrocnemius mass was unaffected by diet, although gastrocnemius muscle fiber cross sectional area was 11% greater (p = 0.018) and total RNA (a surrogate of ribosome density) was 24% greater (p = 0.001) in ERD. Transcriptomic analysis of the gastrocnemius indicated that 22 mRNAs were significantly greater in ERS versus ERD (p < 0.01), whereas 55 mRNAs were greater in ERD versus ERS (p < 0.01). There were no differences in gastrocnemius citrate synthase activity or mitochondrial coupling (respiratory control ratio), although mitochondrial ROS production was lower in ERD gastrocnemius (p = 0.016), which may be explained by an increase in glutathione peroxidase protein levels (p = 0.020) in ERD gastrocnemius. Dietary EVs profiling confirmed that sonication in the ERD diet reduced EVs content by ∼60%. Our findings demonstrate that bovine milk EVs depletion through sonication elicits anabolic and transcriptomic effects in the gastrocnemius muscle of rapidly maturing rats. While this did not translate into a functional outcome between diets (i.e., rotarod performance), longer feeding periods may be needed to observe such functional effects.

References Powered by Scopus

Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources

28705Citations
N/AReaders
Get full text

HISAT: A fast spliced aligner with low memory requirements

15270Citations
N/AReaders
Get full text

Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists

11394Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Native and bioengineered extracellular vesicles for cardiovascular therapeutics

312Citations
N/AReaders
Get full text

Milk-derived extracellular vesicles in inter-organism, cross-species communication and drug delivery

113Citations
N/AReaders
Get full text

Acute and chronic effects of resistance training on skeletal muscle markers of mitochondrial remodeling in older adults

40Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Parry, H. A., Brooks Mobley, C., Mumford, P. W., Romero, M. A., Haun, C. T., Zhang, Y., … Kavazis, A. N. (2019). Bovine milk extracellular vesicles (EVs) modification elicits skeletal muscle growth in rats. Frontiers in Physiology, 10(MAR). https://doi.org/10.3389/fphys.2019.00436

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 23

77%

Researcher 5

17%

Professor / Associate Prof. 2

7%

Readers' Discipline

Tooltip

Biochemistry, Genetics and Molecular Bi... 11

37%

Agricultural and Biological Sciences 10

33%

Medicine and Dentistry 8

27%

Pharmacology, Toxicology and Pharmaceut... 1

3%

Save time finding and organizing research with Mendeley

Sign up for free