Forward modelling of Bouguer Anomalies along a transect of the Southern Apennines and the Southern Tyrrhenian Sea (Italy)

4Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

In the present study, we perform a gravity modelling at crustal scale along the trace of the CROP-04 (on-shore) and M-6B (off-shore) deep seismic reflection profiles, crossing the Southern Apennines and the Southern Tyrrhenian Sea (Italy). Along the 321 km-long modelled profile, we investigate the crustal-scale sources for the observed gravity anomalies through a simplified model of the crust and upper mantle across both onshore and offshore areas. After a compelling review of the published Moho geometries in the area, that were retrieved from either active or passive seismic methods, we test them in the observed gravity field through forward modelling of the Bouguer gravity anomalies. The comparison between the different Moho interpretations highlights the major contributors to the observed Bouguer gravity at the crustal scale, defining a set of starting values of these parameters for our final model. The proposed model locates the westward flexure of the Adriatic Moho, mimicking the subduction of the Adriatic lithosphere beneath the Peri-Tyrrhenian block and locates the step between the western (Tyrrhenian) and the eastern (Adriatic) Moho beneath the Apennines range providing a valuable geometrical and compositional model at the crustal scale. The model depicts a typical oceanic-to-continental crust transition in the Tyrrhenian domain and represents a solid starting base for further detailed modelling across the area.

Cite

CITATION STYLE

APA

Akimbekova, A., Mancinelli, P., Cristina, P. C., Giorgio, M. G., & Barchi, M. R. (2021). Forward modelling of Bouguer Anomalies along a transect of the Southern Apennines and the Southern Tyrrhenian Sea (Italy). Italian Journal of Geosciences, 140(3). https://doi.org/10.3301/IJG.2021.03

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free