This study aimed to elucidate the key mechanisms and effects of the functional component of green tea, epigallocatechin gallate (EGCG) on a diabetic mouse model. The detected relationship between compounds and genes recorded in the STITCH database highlighted an interaction network between the direct target genes of EGCG and the known diabetes-related genes, which was made apparent through the analysis of gene-gene interactions and signaling pathways, revealing that a key AGE-RAGE signaling pathway in diabetes was enriched in the network. By means of systematic supplementary analyses on diabetic mice, provided evidence suggested that EGCG could significantly enhance the morphology of pancreatic tissues in diabetic mice and downregulate the blood glucose level in a clear dose effect manner, and increased insulin receptor (IR), insulin receptor substrate (IRS1 and IRS2) expression in the liver. Through the detection of protein expression, EGCG was observed to possess the ability to downregulate the accumulation of AGE-RAGE in pancreatic tissues as well as in the transcription factor nuclear factor-κB (NF-κB), which represents a potentially significant method by which EGCG influences diabetes. The results of this study provided evidence indicating that EGCG can effectively improve the morphology of pancreatic tissues, but notably reduce blood glucose levels in diabetic mice, which may be related to its inhibition of AGE-RAGE signaling pathway and activation of transcription factor NF-κB pathway.
CITATION STYLE
Feng, Z., Hou, X., Zhu, C., Zhu, J., & Jiang, C. (2019, May 1). Epigallocatechin gallate ameliorates morphological changes of pancreatic islets in diabetic mice and downregulates blood sugar level by inhibiting the accumulation of AGE-RAGE. Journal of Cellular Biochemistry. Wiley-Liss Inc. https://doi.org/10.1002/jcb.28139
Mendeley helps you to discover research relevant for your work.