Potent immunity to low doses of influenza vaccine by probabilistic guided micro-targeted skin delivery in a mouse model

147Citations
Citations of this article
105Readers
Mendeley users who have this article in their library.

Abstract

Background: Over 14 million people die each year from infectious diseases despite extensive vaccine use [1]. The needle and syringe-first invented in 1853-is still the primary delivery device, injecting liquid vaccine into muscle. Vaccines could be far more effective if they were precisely delivered into the narrow layer just beneath the skin surface that contains a much higher density of potent antigen-presenting cells (APCs) essential to generate a protective immune response. We hypothesized that successful vaccination could be achieved this way with far lower antigen doses than required by the needle and syringe. Methodology/Principal Findings: To meet this objective, using a probability-based theoretical analysis for targeting skin APCs, we designed the Nanopatch™, which contains an array of densely packed projections (21025/cm2) invisible to the human eye (110 μm in length, tapering to tips with a sharpness of <1000 nm), that are dry-coated with vaccine and applied to the skin for two minutes. Here we show that the Nanopatches deliver a seasonal influenza vaccine (Fluvax® 2008) to directly contact thousands of APCs, in excellent agreement with theoretical prediction. By physically targeting vaccine directly to these cells we induced protective levels of functional antibody responses in mice and also protection against an influenza virus challenge that are comparable to the vaccine delivered intramuscularly with the needle and syringe-but with less than 1/100th of the delivered antigen. Conclusions/Significance: Our results represent a marked improvement-an order of magnitude greater than reported by others-for injected doses administered by other delivery methods, without reliance on an added adjuvant, and with only a single vaccination. This study provides a proven mathematical/engineering delivery device template for extension into human studies-and we speculate that successful translation of these findings into humans could uniquely assist with problems of vaccine shortages and distribution-together with alleviating fear of the needle and the need for trained practitioners to administer vaccine, e.g., during an influenza pandemic. © 2010 Fernando et al.

Cite

CITATION STYLE

APA

Fernando, G. J. P., Chen, X., Prow, T. W., Crichton, M. L., Fairmaid, E. J., Roberts, M. S., … Kendall, M. A. F. (2010). Potent immunity to low doses of influenza vaccine by probabilistic guided micro-targeted skin delivery in a mouse model. PLoS ONE, 5(4). https://doi.org/10.1371/journal.pone.0010266

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free