Dimension estimation using weighted correlation dimension method

10Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Dimension reduction is an important tool for feature extraction and has been widely used in many fields including image processing, discrete-time systems, and fault diagnosis. As a key parameter of the dimension reduction, intrinsic dimension represents the smallest number of variables which is used to describe a complete dataset. Among all the dimension estimation methods, correlation dimension (CD) method is one of the most popular ones, which always assumes that the effect of every point on the intrinsic dimension estimation is identical. However, it is different when the distribution of a dataset is nonuniform. Intrinsic dimension estimated by the high density area is more reliable than the ones estimated by the low density or boundary area. In this paper, a novel weighted correlation dimension (WCD) approach is proposed. The vertex degree of an undirected graph is invoked to measure the contribution of each point to the intrinsic dimension estimation. In order to improve the adaptability of WCD estimation, k-means clustering algorithm is adopted to adaptively select the linear portion of the log-log sequence (logδk,logC(n,δk)). Various factors that affect the performance of WCD are studied. Experiments on synthetic and real datasets show the validity and the advantages of the development of technique.

Cite

CITATION STYLE

APA

Liu, Y., Yu, Z., Zeng, M., & Wang, S. (2015). Dimension estimation using weighted correlation dimension method. Discrete Dynamics in Nature and Society, 2015. https://doi.org/10.1155/2015/837185

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free